Performance analysis of third-order nonlinear Wiener adaptive systems
نویسندگان
چکیده
This paper presents a detailed performance analysis of thirdorder nonlinear adaptive systems based on the Wiener model. In earlier work, we proposed the discrete Wiener model for adaptive filtering applications for any order. However, we had focused mainly on first and second-order nonlinear systems in our previous analysis. Now, we present new results on the analysis of third order systems. All the results can be extended to higher-order systems. The Wiener model has many advantages over other models such as the Volterra model. These advantages include less number of coefficients and faster convergence. The Wiener model performs a complete orthogonalization procedure to the truncated Volterra series and this allows us to use linear adaptive filtering algorithms like the LMS to calculate all the coefficients efficiently. Unlike the Gram-Schmidt procedure, this orthogonalization method is based on the nonlinear discrete Wiener model. It contains three sections: a single-input multi-output linear with memory section, a multi-input, multi-output nonlinear no-memory section and a multi-input, single-output amplification and summary section. Computer simulation results are also presented to verify the theoretical performance analysis results.
منابع مشابه
Controlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm
Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...
متن کاملAdaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks
This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...
متن کاملAdaptive neural control of nonlinear fractional order multi- agent systems in the presence of error constraintion
In this paper, the problem of fractional order multi-agent tracking control problem is considered. External disturbances, uncertainties, error constraints, transient response suitability and desirable response tracking problems are the challenges in this study. Because of these problems and challenges, an adaptive control and neural estimator approaches are used in this study. In the first part...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کامل